Medicated Feed Additive Serial Dilutor Calculator Guide Prepared by Shane Gadberry, Professor - Animal Science

The Medicated Feed Additive Serial Dilutor Calculator is an educational tool for calculating the quantity of a medicated feed additive for a feed group and applying a one, two, or three step sequential dilution to achieve a more manageable feed mixing and delivery rate.

1. Enter the Target Medicated Feed Intake and rate (Drop-Down Menu) as either mg/animal or $\mathrm{mg} / \mathrm{lb}$ weight.

2. Herd and Feed Inputs
a. Enter the Number of Animals (animals) in the feeding group.
b. Enter the Average Size (lbs/animal) of animals in the feeding group.
c. Enter the Total Daily Supplemental Feed Rate (lb/animal).
d. Enter the Target Batch Mix Size (lb).
e. Enter the Concentration of the Medicated Feed Article (g/lb) as stated on the label.

3. Dilutions - Up to 3 serial dilutions are available (Dilute 1, Dilute 2, and Dilute 3). For dilute 1, enter the pounds of concentrated medicated feed from the bag to be mixed with a nonmedicated feed of similar particle size to achieve the first level of dilution. A one-to-one dilute for example will reduce the medicated feed concentration by 50%. For Dilute 2 , the medicated feed from Dilute 1 is further diluted with a non-medicated feed to achieve an even more diluted form of a medicated feed mix. The Dilute 2 mix can be further diluted to achieve Dilute 3 mix. Subsequent dilution amounts of a medicated feed should not exceed previous dilution total.

Dilute 1			Dilute 2			Dilute 3			
Amount of concentrated medicated feed		lb	Amount of DILUTE 1 Medicated Feed	1	lb	Amount of DILUTE 2 Medicated Feed	1	lb	
		Amount of non-medicated feed supplement for dilution				1	lb		
Amount of non-medicated feed supplement for dilution	1		lb	Amount of non-medicated feed supplement for dilution	1	lb	Concentration of Final Dilute 3 Medicated Feed	$0.000 \quad \mathrm{~g} / \mathrm{lb}$	
Concentration of Final	0.000	g / lb	Concentration of Final Dilute 2 Medicated Feed	0.000	g / lb	If the total amount of Dilute 1 is used to make Dilute 2 and the total amount of Dilute 2 used to make Dilute 3, available Dilute $3=$	8.000	lbs	
			If the total amount of Dilute	4.000	lbs				
Total Amount Dilute 1	2	lbs	available Dilute $2=$						

4. Mixing Summary - Determine which option [Option 1 (full strength), Option 2 (Dilute 1), Option 3 (Dilute 2), or Option 4 (Dilute 3)] is most practical to blend with the final non-medicated feed for daily feeding.

5. Unit Converter - convert medicated feed options from pounds to either ounces or grams for weighing and mixing.

Example 1.
The objective is to provide $\mathbf{2 0 0} \mathbf{~ m g}$ per animal of a medicated feed additive to $\mathbf{6 0}$ stocker steers weighing 550 pounds that will be supplemented at 5.5 lbs supplement per calf, daily. A total of 2,000 lbs feed will be mixed per feed batch.

The label of the medicated feed purchased indicates $\mathbf{9 0}$ grams (\mathbf{g})/Ib active ingredient.

Using a series of 3 dilutions at a 1:2 dilution rate, dilution 1 would have a concentration of $30 \mathrm{~g} / \mathrm{lb}$, dilution $2,10 \mathrm{~g} / \mathrm{lb}$, and dilution $3,3.333 \mathrm{~g} / \mathrm{lb}$.

The calculated concentration of medicated feed per batch is $36.364 \mathrm{mg} / \mathrm{lb}$ for each of the 4 blending options. Multiplying the medicated feed $36.364 \mathrm{mg} / \mathrm{lb} \times 5.5 \mathrm{lb} /$ animal daily feeding rate equals the target 200 mg /animal.

Blending option 1 would require 0.808 lb of the concentrated medicated feed added to 1999.192 lb nonmedicated feed to get to the final 2000 lb batch size.

Blending option 4 would require 21.821 lb of the $3^{\text {rd }}$ Dilution Level added to 1978.179 lb feed to get to the final 2000 lb batch size.

If starting with 1 lb of concentrated medicated feed in Dilute 1 and using a 1:2 dilution ratio for Dilute 1, Dilute 2 , and Dilute 3 , the final Dilute 3 would yield 27 lbs of a $3.33 \mathrm{~g} / \mathrm{lb}$ medicated feed mix. If Dilute 3 is used to produce Option 4 feed mixing, there would be 5.179 lb Dilute 3 remaining after mixing 12,000 lb feed batch.

Example 2.
The objective is to provide $\mathbf{0 . 5} \mathrm{mg} / \mathrm{lb}$ weight of a medicated feed additive to $\mathbf{5 0}$ cows weighing 1,200 pounds that will be supplemented at $\mathbf{1} \mathbf{l b}$ per cow, daily. A total of 50 lbs feed will be mixed per feed batch.

The label of the medicated feed purchased indicates $\mathbf{5 0} \mathbf{~ g r a m s} \mathbf{(g)} / \mathbf{l b}$ active ingredient.
Using a series of 3 dilutions at a 1:1 dilution rate, dilution 1 would have a concentration of $25 \mathrm{~g} / \mathrm{lb}$, dilution $2,12.5 \mathrm{~g} / \mathrm{lb}$, and dilution $3,6.25 \mathrm{~g} / \mathrm{lb}$.

The calculated concentration of medicated feed per batch is $600 \mathrm{mg} / \mathrm{lb}$ for each of the 4 blending options. Multiplying the medicated feed $600 \mathrm{mg} / \mathrm{lb} \times 1 \mathrm{lb} /$ animal daily feeding rate equals the target $600 \mathrm{mg} /$ animal $(1,200 \mathrm{lb}$ weight $\times 0.5 \mathrm{mg} / \mathrm{lb}$ weight).

Blending option 1 would require 0.6 lb of the concentrated medicated feed added to 49.4 lb nonmedicated feed to get to the final 50 lb batch size.

Blending option 4 would require 4.8 lb of the $3^{\text {rd }}$ Dilution Level added to 45.2 lb feed to get to the final 50 lb batch size.

[^0]
[^0]: University of Arkansas, United States Department of Agriculture and County Governments Cooperating. The Arkansas Cooperative Extension Service offers its programs to all eligible persons regardless of race, color, sex, gender identity, sexual orientation, national origin, religion, age, disability, marital or veteran status, genetic information, or any other legally protected status, and is an Affirmative Action/Equal Opportunity Employer.

