Using the 2010 Arkansas Phosphorus Index

Contents

Introduction1
The Phosphorus Index1
Calculating the P Source Potential1
Calculating the P Transport Potential2
Calculating the Best Management Practices (BMPs) Multiplier
Risk Interpretation4
Using the Index4
Summary
BMP Descriptions
Diversion (Code 362)10
Fencing (Code 382)11
Field Border (Code 386)11
Filter Strip (Code 393)11
Grassed Waterway (Code 412)11
Pond (Code 378)12
Riparian Forest Buffer (Code 391)12
Riparian Herbaceous Cover (Code 390)12
Terrace (Code 600)13

AUTHORS: ANDREW SHARPLEY is Professor, Soil and Water Quality Management, with the Crop, Soil and Environmental Sciences Department, University of Arkansas, Fayetteville; **MIKE DANIELS** is Professor, Water Quality and Nutrient Management with the University of Arkansas Division of Agriculture, Little Rock; **KARL VANDEVENDER** is Professor, Engineer with the University of Arkansas Division of Agriculture, Little Rock; **PHILIP A. MOORE, JR.** is Soil Scientist with the USDA/Agricultural Research Service in Fayetteville. **BRIAN HAGGARD** is Director and Associate Professor with Arkansas Water Resources Center, Fayetteville; **NATHAN SLATON** is Professor, Soil Fertility and Director of Soil Testing with the Crop, Soil and Environmental Sciences Department, University of Arkansas, Fayetteville; and **CHARLES WEST** is Professor, Forage and Biomass Physiology and Ecology with the Crop, Soil and Environmental Sciences Department, University of Arkansas, Fayetteville; and

Using the 2010 Arkansas Phosphorus Index

Introduction

On January 1, 2010, the Arkansas Natural Resources Commission (ANRC) adopted a revised Arkansas P Index (API). ANRC requires the use of the API to prepare nutrient management plans in those watersheds which Title XXII designates as Nutrient Surplus Areas. The USDA Natural Resources Conservation Service (NRCS) has also adopted the API as part of the 590 nutrient management planning conservation practice standard. As nutrient management plans (NMPs) are required by several regulations pertaining to the application of manure, participation in certain cost-share programs and many integrator contracts, most land application of manure is usually associated with the API and a nutrient management plan.

The API assesses the risk of phosphorus (P) loss in runoff from pastures and hayland as a function of source potential (i.e., P from the soil and manure application), transport potential (i.e., risk P movement offsite as affected by runoff and erosion, field slope, grazing intensity and proximity to streams) and any additional best management practices (BMPs) implemented between the application site and potential receiving waters. As a result, for a specific set of field conditions, the API associates a P runoff risk value to a specific manure or biosolids application rate. The classification of this value into a risk range determines if the application is environmentally acceptable. If acceptable, the nutrient management plan specifies this application rate as the maximum rate for the combination of P source and field in question. During the implementation of a nutrient management plan, application rates up to the specified maximum can be applied. Lower rates are generally considered to be associated with lower environmental P runoff risk and therefore also acceptable. This publication describes the API and how to interpret the assigned risk and provides example calculations.

The Phosphorus Index

The API addresses seven site characteristics which are grouped into either Source or Transport Factors. The P Source Factors are (1) soil test P and (2) soluble P application rate. The P Transport Factors include (3) soil erosion, (4) soil runoff class, (5) flooding frequency, (6) application method and (7) timing of P application. In addition to management practices that influence site characteristics, there are nine additional BMPs that can be considered to reduce P runoff risk. The landowner has the option to implement a combination of diversions, terraces, ponds, filter strips, grassed waterways, paddock fencing, riparian forest buffers, riparian herbaceous buffers and field borders to meet his or her conditions and preferences.

The API is calculated as:

P Index = [(P Source Potential * P Transport	[Eq. 1]
Potential * BMPs Multiplier) / 1.8] * 100	

The product of the P Source Potential, P Transport Potential and BMPs Multiplier is divided by 1.8 and then multiplied by 100 to express the risk value on a 100-point scale to facilitate interpretation. Prior to calculating the overall P Index value, each of its components must be calculated separately as indicated below.

Calculating the P Source Potential

As previously indicated, the P Source Potential considers both the soil and the material applied as potential P sources (equation 2).

P Source Potential = {WEP _{coef} * [WEP +	[Eq. 2]
MNRL _{coef} * (TP – WEP)]} + {STP _{coef} * STP}	

STP is soil test P (lbs/acre) as determined by the Mehlich-3 extraction method for a 0-4 inch soil sample (see FSA1035, *Soil Testing for Manure Management*, and FSA2121, *Test Your Soil for Plant Food and Lime Needs*, for proper soil sampling procedures). Input values of STP in lbs P/acre are determined by multiplying soil test report values in parts per million (ppm) by 1.33 for a standard 4-inch soil sample.

WEP is water extractable P applied (lbs WEP/acre) as manure or biosolids. This value is calculated as the WEP concentration of the material being applied times the amount of material being applied. For example, broiler litter with a WEP concentration of 5 lbs/ton applied at a rate of 1.5 tons/acre would result in 7.5 lbs/acre WEP application. **TP** is the total amount of P applied (lbs P/acre) as manure or biosolids. This value is calculated as the TP concentration of the material being applied times the amount of material being applied. For example, broiler litter with a total P concentration of 25 lbs P/ton applied at a rate of 1.5 tons/acre would result in 37.5 lbs P/acre of total P application. Multiplying 37.5 by 2.29 results in 86 lbs P_2O_5 /acre total P application.

MNRL_{coef} is a factor accounting for the continued but slow release of P from manure or biosolid after land application, which can contribute additional P in runoff. MNRL is 0.05 (5% of non-WEP total P) for untreated material and 0.005 (0.5% of non-WEP total P) for alum-treated materials. The intention of treating with alum (aluminum sulfate) is to bind up the soluble P in the litter or manure and therefore reduce the P runoff risk.

 WEP_{coef} is a research-derived multiplier that correlates to the potential for land-applied materials to release P to runoff; it is 0.095 for poultry litter, 0.031 for liquid manure, 0.058 for biosolid cake and 0.029 for liquid biosolids.

 STP_{coef} is a research-derived multiplier of 0.0018, which describes the fraction of STP that will likely result in runoff P.

Calculating the P Transport Potential

The P Transport Potential is calculated as the sum of the loss rating value for soil erosion, soil runoff class, flooding frequency, application method and application timing. Each of these factors is divided into subclasses where each class is associated with a loss rating value (Table 1). When calculating the P Transport Potential, each site is

Table 1. P Transport Potential Loss Rating Values

evaluated in terms of the various factors and the appropriate loss rating values assigned, then summed to estimate the total P Transport Potential. Larger P Transport Potential values indicate greater P runoff risk than lower values.

Soil Erosion as estimated by RUSLE2. Wellmanaged pasture systems would be expected to have erosion rates less than one ton/acre/year, hence the loss rating value for erosion is typically zero.

Soil Runoff Class is determined from the Runoff Curve Number and Soil Runoff Class tables (Tables 2 and 3). To use these tables, the planned Pasture Management, Soil Hydrologic Group and representative Soil Slope are needed. This information is determined from a combination of NRCS soil classification and survey information (available at http://soildatamart.nrcs.usda.gov and http://websoilsurvey.nrcs.usda.gov), landowner interviews and site visits. In practice, the planned Pasture Management and Soil Hydrologic Group provide the Runoff Curve Number from Table 2. The Runoff Curve Number and Soil Slope provide the Soil Runoff Class from Table 3. The Soil Runoff Class provides the Soil Runoff Class loss rating value from Table 1.

Flooding Frequency falls into four categories: none to very rare, rare, occasional and frequent as classified by NRCS soil classification/survey information (available at <u>http://soildatamart.nrcs.usda.gov</u> and <u>http://websoilsurvey.nrcs.usda.gov</u>). Flooding frequency is used as a surrogate for proximity of a field to a stream and assumes that the potential for runoff from a field to enter a stream increases as its flooding frequency increases.

Factor		Rating												
Soil erosion (tons/acre/year)	<1		1 to 2			2 to 3	3 to 5	>5						
Loss rating value	0		0.1		0.2		0.4	1.0						
Soil runoff class	Negligible		V. Low Low		Low Lo [,]		. Low Lo		′. Low Lo			Moderate	High	V. High
Loss rating value	0.1	0.	0.15 0.		.2	0.5	1.0	1.5						
Flooding frequency	None to very ra 0	are	e Rare 0.2		Occasional 0.5		Frequent							
Application method	Incorporated		0	Surface applied			Surface applied on frozen ground or snow							
Loss rating value	0.1				0.	2	0.5							
Application timing	July-Oct.				March	-June	NovFeb.							
Loss rating value	0.1				0.2	25		0.6						

P Transport Potential = (soil erosion + runoff class + flooding frequency + application method + application timing)

Table 2. Runoff Curve Number

Pasture Management	Soil Hydrologic Group					
	Α	В	С	D		
Continuously grazed > 0.75 Animal Units/Acre	68	79	86	89		
Continuously grazed < 0.75 Animal Units/Acre	49	69	79	84		
Rotational Grazing	39	61	74	80		
Hayland	30	58	71	78		

Table 3. Soil Runoff Class

			ļ	Runoff	Curve I	Numbe	r	
		<60	60-65	66-70	71-75	76-80	81-85	>85
	<1	Ν	Ν	N	Ν	VL	VL	VL
	1	Ν	N	VL	VL	VL	L	L
	2	Ν	VL	VL	VL	L	L	М
	3	N	VL	VL	L	L	М	М
	4	Ν	VL	L	L	М	М	н
	5	Ν	VL	L	L	М	М	Н
	6	Ν	VL	L	М	М	Н	Н
8	7	Ν	L	L	М	М	Н	Н
Slope %	8	Ν	L	L	М	М	Н	VH
SI	9	Ν	L	L	М	Н	н	VH
	10	Ν	L	М	М	Н	н	VH
	11	Ν	L	М	М	Н	н	VH
	12	Ν	L	М	М	Н	VH	VH
	13	N	L	М	М	н	VH	VH
	14	Ν	L	М	Н	н	VH	VH
	15	Ν	L	М	н	н	VH	VH
	>15	Ν	L	М	Н	н	VH	VH

N = Negligible, VL = V. Low, L = Low, M = Moderate, H = High, VH = V. High

Application Method describes how manure or biosolids are land-applied with the choices of incorporated, surface applied or surface applied to frozen or snow-covered ground. It should be noted that surface application to frozen or snow-covered ground may not be an option, depending on which regulations may apply.

Application Timing is categorized into July-Oct, March-June and Nov-Feb, as a function of the propensity for rainfall and runoff to occur based on historical rainfall and stream flow data.

Calculating the Best Management Practices (BMPs) Multiplier

The presence of NRCS Conservation Practices or BMPs can decrease P runoff with varying degrees of effectiveness (Table 4). The multiplier associated with each BMP is calculated as one minus the effectiveness of the BMP implemented. The multiplier for all the BMPs implemented is the product of the multiplier for each BMP (Equation 3).

BMPs Multiplier = [Eq. 3] (1 – Effectiveness 1) * (1 – Effectiveness 2) * (1 – Effectiveness n)

Effectiveness rating values from Table 4 are expressed as values between 0 and 1. Multiplier values will be between 0 and 1. If no additional BMPs are implemented, the BMPs Multiplier value will be 1.

If only a portion of the field drains to a particular BMP, the multiplier for that BMP should be reduced to reflect the fraction of the field that drains to it.

Table 4. Approved BMPs for Use in the ArkansasPhosphorus Index

Best Management Practice	CPS†	Effectiveness
Diversion	362	5%
Fencing	382	30%
Field borders	386	10%
Filter strip	393	20%
Fenced filter strip		30%
Grassed waterway	412	10%
Pond [‡]	378	20%
Fenced pond		30%
Riparian forest buffer	391	20%
Fenced riparian forest buffer		35%
Riparian herbaceous cover	390	20%
Fenced riparian herbaceous cover		30%
Terrace	600	10%

[†] CPS is the NRCS Conservation Practice Standard; see http://www.nrcs.usda.gov/technical/Standards/nhcp.html

[‡] The effectiveness rating for any given pond will depend on how much of field drains into the pond. Nutrient management plan writers must make a professional judgment on percentage of a field that drains into pond based on topographic maps and site visits. The assigned effectiveness is adjusted by that percentage. Professional judgment based on available maps and site visits should normally be sufficient to guide decisions regarding the modification of the multiplier.

Risk Interpretation

After a P Index value is determined from Equation 1, fields are assigned a P Index risk class of low, medium, high or very high based on the normalized risk value (Table 5). Each class is associated with interpretations and recommendations. Recommendations range from cautions regarding buildup of STP levels for the low risk class to no additional P applications until the API rating is reduced from the very high class. While the API does not address environmental concerns associated with N applications, application rates should never exceed the crops' N requirement after N storage and application losses are considered. Although most nutrient management plans will be written for a five-year period, plans for fields receiving biosolids (sewage sludge) will only be valid for one year.

Table 5. Interpretation and Recommendations forthe Arkansas P Index

P Index Value	Site Interpretations and Recommendations
Low < 33	Caution against long-term buildup of P in the soil.
Medium 33-66	Evaluate the Index and determine any field areas that could cause long-term concerns. Consider adding BMPs.
High 67-100	Reduce litter application rate and re-run PI until the P index is in the Medium range.
Very High >100	No P application. Add BMPs to decrease this value below the Very High class in the short term and develop a conservation plan that would reduce the API value to a lower risk category, with a long-tem goal of a value in the Medium class or lower.

Using the Index

Several scenarios are presented below to demonstrate how the API works and how BMPs can reduce the risk of P loss as a function of the API. Obviously, these scenarios do not cover all eventualities but are meant to show the flexibility of management options resulting from an API assessment. Further, the concepts of a split-litter application (spring and fall) and manure-nutrient banking are presented. For Scenarios 2 to 5, the source and transport variables changing from the previous scenario are in red type for ease of comparison. Scenario 1 – In this scenario, STP is 100 lbs/acre, litter is surfaced applied at 1.5 tons/acre in September, litter WEP is 5 lbs P/ton, litter total P is 25 lbs P/acre, soil erosion is negligible, runoff class is negligible (Soil Hydrologic Group C, Rotational Grazing, RCN 74, Slope <1%), no flooding occurs and there are no BMPs in place.

Scenario 2 – In this scenario, STP is 500 lbs/acre, litter is surface applied at 1.5 tons/acre in April, litter WEP is 5 lbs P/ton, litter total P is 25 lbs/ton, soil erosion is negligible, runoff class is moderate (Soil Hydrologic Group C, Rotational Grazing, RCN 74, Slope 6%), no flooding occurs and there are no BMPs.

Scenario 3 – In this scenario, STP is 500 lbs/acre, litter is surface applied at 1.5 tons/acre in April, litter WEP is 5 lbs P/ton, litter total P is 25 lbs/ton, soil erosion is negligible, runoff class is moderate (Soil Hydrologic Group C, Rotational Grazing, RCN 74, Slope 6%), no flooding occurs, there is a riparian herbaceous buffer and 50% of the field's runoff enters a pond.

Scenario 4 – In this scenario, STP is 500 lbs/acre, litter is surface applied at 1.5 tons/acre in April, litter WEP is 5 lbs P/ton, litter total P is 25 lbs P/ton, soil erosion is negligible, runoff class is high (Soil Hydrologic Group C, RCN 86 continuous grazing at >0.75 animal units/acre, Slope 6%), no flooding occurs and there is a fenced riparian herbaceous buffer.

Scenario 5 – Split application of litter: For split applications the API is calculated three times to estimate the P runoff risk associated with soil only (WEP = 0, TP = 0, Application Timing same as higher risk application timing window), first litter application only (STP = 0) and second litter application only (STP = 0). The three values are then summed to estimate the total P runoff risk.

In this scenario, STP is 50 lbs/acre, litter is surface applied at 1.5 tons/acre in April and again in September, litter WEP is 5 lbs P/ton, litter total P is 25 lbs P/ton, soil erosion is negligible, runoff class is negligible (Soil Hydrologic Group C, Rotational Grazing, RCN 74, Slope <1%), no flooding occurs and there is a fenced riparian herbaceous buffer.

Scenario 6 – Manure Nutrient Banking – When the P Index value is classified as high or lower and the application rate used to calculate this value is no more than 1 ton/acre, or 300 gallons/acre, manure banking can be considered. Manure banking is typically applying twice the volume of manure every other year. In the off-year(s), no application of P is made. The intent is to allow farm management options that include practical nutrient applications with acceptable uniformity, while addressing water quality concerns.

Scenario 1

Characteristic	stic Description									
		P Sc	ource P	otenti	al					
P Source Pot	ential = {WEP _{coe}	_{ef} * [WE	EP + MI	NRL _{coe}	_{ef} * (T	P – WEP)]} -	- {STP _{coef} * ST	P}		
STP = 100 lbs/acre				* 1.5 tons/acre = TP = 25 lbs/ton * 1.5 tons/a /EP/acre 37.5 lbs TP/acre						
P Source Potential = {0.095 * [7.5 + 0.05 * (37.5 - 7.5)]} + {0.0018 * 100}									1.04	
		P Tra	nsport	Poten	tial					
Soil erosion (tons/acre/yr)	< 1		1 to 2			2 to 3	3 to 5	> 5		
Loss rating value	0		0.1			0.2	0.4	1	0	
Soil runoff class	Negligible	V. L	_OW	Lo	W	Moderate	High	V. High		
Loss rating value	0.1	0.	15	0.	2	0.5	1.0	1.5	0.1	
Flooding frequency	None to very	rare	Ra	re	0	ccasional	Frec	luent		
Loss rating value	0		0.	2		0.5	.5 2.0		0	
Application method	Incorporate	ed		Surfa	ce ap	plied	d Surface applied on frozen ground or snow			
Loss rating value	0.1				0.2		0	.5	0.2	
Application timing	July-Oct.			Ma	rch-Jı	une	Nov.	-Feb.		
Loss rating value	0.1				0.25		0	.6	0.1	
P Transport = (soil erosion + runoff cla	ss + flooding fre	quency	/ + app	licatior	n met	hod + applic	ation timing)		0.4	
		BN	1Ps Mu	ıltiplie	r					
BMPs Multiplier	= (1 - Effectiver	ness 1)	* (1 –	Effecti	venes	ss 2) * * ([.]	- Effectivene	ss n)		
	BMPs M	ultiplie	er = (1	- 0.0)					1.0	
P Index = [(P S	ource Potential	* P Tra	nspor	t Poter	ntial ^a	* BMPs Mult	iplier) / 1.8] *	100		
Р	Index = [(1.04 *	0.4 * 1	.0) / 1.	8] * 10	0				23 (Low)	

Scenario 2

Characteristic		Description							
		P Sou	urce Potent	al					
P Source Pote	ential = $\{WEP_{coe}\}$	_f * [(WEF	+ MNRL _{co}	_{ef} * (T	P – WEP)]} +	{STP _{coef} * ST	ΈP}		
STP = 500 lbs P/acre	WEP = 5 lbs/ton * 1.5 tons/acre =TP = 25 lbs/ton * 1.5 tons/7.5 lbs WEP/acre37.5 lbs TP/acre							s/acre =	
P Source Poter	itial = {0.095 * [7	7.5 + 0.0	5 * (37.5 – ⁻	7.5)]} -	+ {0.0018 * 5	00}		1.76	
		P Trans	sport Poter	tial					
Soil erosion (tons/acre/yr)	< 1	1	to 2		2 to 3	3 to 5	> 5		
Loss rating value	0		0.1		0.2	0.4	1	0	
Soil runoff class	Negligible	V. Lo	w Lo	w	Moderate	High	V. High		
Loss rating value	0.1	0.1	5 0.	2	0.5	1.0	1.5	0.5	
Flooding frequency	None to very	rare	Rare	0	ccasional	Freq	uent		
Loss rating value	0		0.2		0.5	2	.0	0	
Application method	Incorporate	ed	Surfa	ce ap	plied	Surface a frozen grou	pplied on nd or snow		
Loss rating value	0.1			0.2		0	0.2		
Application timing	July-Oct.		Ма	rch-Ju	ine	Nov.	-Feb.		
Loss rating value	0.1			0.25		0	.6	0.25	
P Transport = (soil erosion + runoff clas	ss + flooding fre	quency -	+ applicatio	n meth	nod + applica	tion timing)		0.95	
		BMF	Ps Multiplie	r					
BMPs Multiplier	= (1 – Effectiver	ness 1) *	(1 – Effecti	venes	s 2) * * (1	- Effectivenes	ss n)		
	BMPs M	ultiplier	= (1 - 0.0)					1.0	
P Index = [(P So	ource Potential	* P Tran	sport Pote	ntial *	BMPs Multi	plier) / 1.8] *	100		
P lı	ndex = [(1.76 * (0.95 * 1.	0) / 1.8] * 10	00				93 (High)	

Scenario 3

Characteristic	Description									
		P So	urce P	otenti	al					
P Source Pot	ential = $\{WEP_{coe}\}$	ef * [WE	P + MN	VRL _{coe}	_f * (TI	P – WEP)]} +	{STP _{coef} * ST	P}		
STP = 500 lbs P/acre	-	P = 5 lbs/ton * 1.5 tons/acre = TP = 25 lbs/ton * 1.5 tons/acre 7.5 lbs WEP/acre 37.5 lbs TP /acre				/acre =				
P Source Pote	ntial = {0.095 * [7	7.5 + 0.0	05 * (3	7.5 – 7	.5)]}	+ {0.0018 * 5	00}		1.76	
		P Trar	nsport	Poten	tial					
Soil erosion (tons/acre/yr)	< 1		1 to 2			2 to 3	3 to 5	> 5		
Loss rating value	0		0.1			0.2	0.4	1	0	
Soil runoff class	Negligible	V. L	ow	Lo	N	Moderate	High	V. High		
Loss rating value	0.1	0.1	15	0.	2	0.5	1.0	1.5	0.5	
Flooding frequency	None to very	rare	Ra	re	0	ccasional	Frec	uent		
Loss rating value	0		0.	2		0.5	2	.0	0	
Application method	Incorporate	ed		Surfa	ce ap	plied		applied on Ind or snow		
Loss rating value	0.1				0.2		0	0.5		
Application timing	July-Oct.			Mai	ch-Ju	ine	Nov.	-Feb.		
Loss rating value	0.1				0.25		0	.6	0.25	
P Transport = (soil erosion + runoff cla	ss + flooding fre	quency	+ appl	ication	meth	nod + applica	tion timing)		0.95	
		BM	Ps Mu	Itiplie	-					
BMPs Multiplier	= (1 - Effectiver	ness 1)	* (1 –	Effectiv	/enes	s 2) * * (1	- Effectivene	ss n)		
E	MPs Multiplier	= (1 – 2	2.0) * (1 – 0.2	0 * 0	.5)			0.72	
P Index = [(P S	ource Potential	* P Tra	nsport	Poter	itial '	BMPs Mult	iplier) / 1. <mark>8]</mark> *	100		
P I	ndex = [(1.76 * 0).95 * 0.	72) / 1	.8] * 10	00				67 (High)	

Scenario 4

Characteristic	Description Rating								
		P Sc	ource P	otenti	al				
P Source Pote	ential = {WEP _{coe}	_{ef} * [WE	EP + MI	NRL _{coe}	_f * (TF	P – WEP)]} +	{STP _{coef} * ST	P}	
STP = 500 lbs P/acre	WEP = 5 7	lbs/tor '.5 lbs \			re =		TP = 25 lbs/te 37.5	on * 1.5 tons lbs TP /acre	/acre =
P Source Poten	tial = {0.095 * [7	7.5 + 0.	05 * (3	7.5 – 7	'.5)]} -	+ {0.0018 * 5	00}		1.76
		P Tra	nsport	Poten	tial				
Soil erosion (tons/acre/yr)	< 1		1 to 2			2 to 3	3 to 5	> 5	
Loss rating value	0		0.1			0.2	0.4	1	0
Soil runoff class	Negligible	V. L	_ow	Lo	N	Moderate	High	V. High	
Loss rating value	0.1	0.	15	0	2	0.5	1.0	1.5	1.0
Flooding frequency	None to very	rare	Ra	re	0	ccasional	Freq		
Loss rating value	0		0.2		0.5		2.0		0
Application method	Incorporate	ed		Surface applied frozen ground					
Loss rating value	0.1				0.2		0	0.2	
Application timing	July-Oct.			Mai	ch-Ju	ine	Nov.	-Feb.	
Loss rating value	0.1				0.25		0	.6	0.25
P Transport = (soil erosion + runoff class	ss + flooding fre	quency	+ appl	lication	meth	nod + applica	tion timing)		1.45
		BN	1Ps Mu	Itiplie	r				
BMPs Multiplier	= (1 – Effectiver	ness 1)	* (1 –	Effectiv	/enes	s 2) * * (1	- Effectivenes	ss n)	
	BMPs M	ultiplie	er = (1 -	- 0.7)					0.7
P Index = [(P Sc	ource Potential	* P Tra	nsport	t Poter	ntial *	BMPs Mult	iplier) / 1.8] *	100	
PIr	ndex = [(1.76 * ·	1.45 * (0.7) / 1.	.8] * 10	0				99 (High)

Scenario 5 – Part A. Soil Only Sub API

Characteristic		Description							Rating
		P Sc	ource P	otenti	al				
P Source P	otential = {WEP _{coe}	_{əf} * [WE	EP + MI	NRL _{coe}	f* (TI	P – WEP)]} +	{STP _{coef} * ST	P}	
STP = 50 lbs/acre	V	WEP = 0 lbs/acre TF						= 0 lbs/acre	
P Source	Potential = {0.095	5 * [0 +	0.05 *	(0 - 0)]} + {	0.0018 * 50}			0.09
		P Tra	nsport	Poten	tial				
Soil erosion (tons/acre/yr)	< 1		1 to 2			2 to 3	3 to 5	> 5	
Loss rating value	0		0.1			0.2	0.4	1	0
Soil runoff class	Negligible	V. L	Low Low		w Moderate		High	V. High	
Loss rating value	0.1	0.	0.15 0.2		2	0.5	1.0	1.5	0.1
Flooding frequency	None to very	rare	re Rare Occasional				Freq		
Loss rating value	0		0.2 0.		0.5	2.0		0	
Application method	Incorporate	ed		Surfa	ce ap	plied		applied on Ind or snow	
Loss rating value	0.1				0.2		0	0.2	
Application timing	July-Oct.			Mar	ch-Jı	ine	Nov.		
Loss rating value	0.1				0.25		0	0.25	
P Transport = (soil erosion + runoff c	lass + flooding fre	quency	/ + app	lication	meth	nod + applica	tion timing)		0.55
		BN	1Ps Mu	ıltiplier	•				
BMPs Multipli	er = (1 – Effectiver	ness 1)	* (1 –	Effectiv	venes	s 2) * * (1	- Effectivene	ss n)	
BMPs Multiplier = $(1 - 0.3)$ 0							0.7		
P Index = [(P	Source Potential	* P Tra	nsport	Poter	tial *	BMPs Mult	iplier) / 1.8] *	100	
P Index = [(0.09 * 0.55 * 0.7) / 1.8] * 100						2 (Low)			

Scenario 5 – Part B. April Application Only Sub API

Characteristic		Description							Rating	
		P So	ource P	otenti	al					
P Source Po	tential = $\{WEP_{coe}\}$	_{ef} * [WE	EP + MI	NRL _{coe}	_f * (TF	P – WEP)]} +	{STP _{coef} * ST	P}		
STP = 0 lbs/acre	-	WEP = 5 lbs/ton * 1.5 tons/acre = TP = 25 lbs/ton * 1.5 ton 7.5 lbs WEP/acre 37.5 lbs TP /acr							acre =	
P Source Po	tential = {0.095 *	[7.5 + (0.05 * (37.5 –	7.5)]}	+ {0.0018 *	0}		0.86	
		P Tra	nsport	Poten	tial					
Soil erosion (tons/acre/yr)	< 1		1 to 2			2 to 3	3 to 5	> 5		
Loss rating value	0		0.1			0.2	0.4	1	0	
Soil runoff class	Negligible	V. L	_OW	Lo	N	Moderate	High	V. High		
Loss rating value	0.1	0.	15	0.2	2	0.5	1.0	1.5	0.1	
Flooding frequency	None to very	rare	Rare Occasional				Frec	Frequent		
Loss rating value	0		0.	2		0.5	2.0		0	
Application method	Incorporate	ed		Surfa	ce apj	plied	Surface a frozen grou			
Loss rating value	0.1				0.2		0	0.2		
Application timing	July-Oct.			Mai	ch-Ju	ne	Nov.			
Loss rating value	0.1				0.25		0	0.25		
P Transport = (soil erosion + runoff cl	ass + flooding fre	quency	/ + app	lication	meth	od + applica	tion timing)		0.55	
		BN	1Ps Mu	Itiplie	r					
BMPs Multiplie	r = (1 – Effectiver	ness 1)	* (1 –	Effectiv	/enes	s 2) * * (1	- Effectivene	ss n)		
							0.7			
P Index = [(P	Source Potential	* P Tra	nspor	t Poter	ntial *	BMPs Multi	plier) / 1.8] *	100		
P Index = [(0.86 * 0.55 * 0.7) / 1.8] * 100							18 (Low)			

Characteristic	Description Rati							Rating
		P Source	Potenti	al				
P Source P	otential = $\{WEP_{coe}\}$	_{ef} * [WEP + I	/INRL _{coe}	_f * (TP – V	VEP)]} +	$\{STP_{coef} * ST$	Έ}	
STP = 0 lbs/acre	-	WEP = 5 lbs/ton * 1.5 tons/acre = TP = 25 lbs/ton * 1.5 tons/acre = 7.5 lbs WEP/acre 37.5 lbs TP /a						′acre =
P Source P	otential = {0.095 *	[7.5 + 0.05 *	(37.5 –	7.5)]} + {0	.0018 *	0}		0.86
		P Transpo	rt Poten	tial				
Soil erosion (tons/acre/yr)	< 1	1 to	2	2 to	3	3 to 5	> 5	
Loss rating value	0	0.1		0.2	2	0.4	1	0
Soil runoff class	Negligible	V. Low	Lov	w Mo	derate	High	V. High	
Loss rating value	0.1	0.15	5 0.2 0.		0.5	1.0 1		0.1
Flooding frequency	None to very	rare F	lare	Occas	ional	Free		
Loss rating value	0		0.2 0.5		5	2.0		0
Application method	Incorporate	ed	Surfa	ce applied		Surface a frozen grou		
Loss rating value	0.1			0.2		0	0.2	
Application timing	July-Oct.		Mar	ch-June		Nov.		
Loss rating value	0.1			0.25		0	.6	0.1
P Transport = (soil erosion + runoff	class + flooding fre	equency + ap	plication	method +	- applica	tion timing)		0.4
		BMPs N	Iultiplie	•				
BMPs Multipli	er = (1 – Effective	ness 1) * (1 ·	- Effectiv	veness 2)	* * (1	- Effectivene	ss n)	
BMPs Multiplier = $(1 - 0.3)$							0.7	
P Index = [(P	Source Potential	* P Transpo	rt Poter	tial * BM	Ps Multi	iplier) / 1.8] *	* 100	
P Index = [(0.86 * 0.4 * 0.7) / 1.8] * 100							13 (Low)	

Scenario 5 – Part C. September Application Only Sub API

Example 5. Calculating Total PI From Sub APIs A, B, C

	P Index Rating
Part A, Soil Only Sub Pl	2 (Low)
Part B, April Application Only Sub PI	18 (Low)
Part C, September Application Only Sub Pl	13 (Low)
Total P Index Rating	33 (Medium)

If banking is used, the application must occur in July, August, September or October. In all cases when an application is made, the agronomic N rate for year of application should not be exceeded. The average P Index value for the application and non-application years should be classified as low or medium.

In this scenario, STP is 500 lbs/acre. Initially the litter was to be surface applied at 1 ton/acre in September; litter WEP is 5 lbs P/ton, litter total P is 25 lbs P/ton, soil erosion is negligible, runoff class is moderate (Soil Hydrologic Group C, Rotational Grazing, RCN 74, Slope 6%), no flooding occurs and there is a riparian herbaceous buffer. The decision was made to apply 2 tons/acre every other year.

Summary

These scenarios demonstrate how the API functions. For example, with an increase in STP from 100 to 500 lbs P/acre with 1.5 tons litter applied in April rather than September, and with all other factors remaining the same, there is an increase in site risk from Low to High (i.e., Scenarios 1 and 2, respectively). However, having a herbaceous buffer in place and where half the field drains into a pond reduces the site risk from High to Medium (Scenarios 2 and 3, respectively). If that same field is continuously grazed with more than 0.75 AU/acre, the potential for runoff from that field increases to such an extent that the site risk value is elevated from Medium to High (i.e., Scenarios 3 and 4, respectively).

The benefit of a split application and manurebanking in certain cases is demonstrated in Scenarios 5 and 6, respectively. However, it must be recognized that the continual, long-term application of P above crop P removal rates will eventually elevate STP levels to an extent that alternatives to application may be needed. This is an integral part of the API and nutrient management planning process in general to educate farmers and applicators to the various options available to manage manures in ways that maintain pasture productivity and protect natural resources.

Scenario 6 – Part A. Initial 1 ton/acre API

Characteristic	Description Ratin								Rating
		P So	urce Po	otenti	al	-			
P Source Pot	ential = {WEP _{coe}	_{ef} * [WEI	P + MN	IRL _{coe}	_f * (TF	P – WEP)]} +	{STP _{coef} * ST	P}	
STP = 500 lbs/acre		WEP = 5 lbs/ton * 1 ton/acre =TP = 25 lbs/ton * 15 lbs WEP/acre25 lbs TP/a							cre =
P Source P	otential = {0.095	* [5 + 0	.05 * (2	<u>25 - 5)</u>	} + {0	0.0018 * 500}			1.47
		P Tran	nsport	Poten	tial				
Soil erosion (tons/acre/yr)	< 1	-	1 to 2			2 to 3	3 to 5	> 5	
Loss rating value	0		0.1			0.2	0.4	1	0
Soil runoff class	Negligible	V. Lo	ow	ow Lov		Moderate	High	V. High	
Loss rating value	0.1	0.1	.15 0.2		2 0.5		1.0	1.5	0.5
Flooding frequency	None to very	rare	are Rare Occasional Frequ					uent	
Loss rating value	0		0.2 0.5		0.5	2.0		0	
Application method	Incorporate	ed		Surfa	ce ap	Surface applied frozen ground or			
Loss rating value	0.1				0.2		0.	0.2	
Application timing	July-Oct.			Mar	ch-Ju	ne	Nov.		
Loss rating value	0.1				0.25		0	0.1	
P Transport = (soil erosion + runoff cla	iss + flooding fre	quency	+ appli	ication	meth	nod + applica	tion timing)		0.8
		BM	Ps Mul	ltiplie	•				
BMPs Multiplier	= (1 - Effective	ness 1)	* (1 – E	Effectiv	venes	s 2) * * (1	- Effectivenes	ss n)	
	BMPs M	ultiplier	r = (1 –	- 0.2)					0.8
P Index = [(P S	ource Potential	* P Trai	nsport	Poter	tial *	BMPs Multi	plier) / 1.8] *	100	
							52 Medium)		

Scenario 6 – Part B. 2 tons/acre API

Characteristic	Description Ra								Rating	
		P Se	ource P	otenti	al					
P Source Potential = {WEP _{coef} * [WEP + MNRL _{coef} * (TP – WEP)]} + {STP _{coef} * STP}										
STP = 500 lbs/acre		WEP = 5 lbs/ton * 2 tons/acre =TP = 25 lbs/ton * 2 to10 lbs WEP/acre50 lbs TP /ac							acre =	
P Source Pote	ential = {0.095 *	[10 + 0	0.05 * (50 - 10)]} + {	0.0018	* 500	}		2.04
		P Tra	nsport	Poten	tial					
Soil erosion (tons/acre/yr)	< 1		1 to 2			2 to 3		3 to 5	> 5	
Loss rating value	0		0.1			0.2		0.4	1	0
Soil runoff class	Negligible	V. I	Low Lo		w Moderate		rate	High	V. High	
Loss rating value	0.1	0.	15	0.2	2	0.5	5	1.0	1.5	0.5
Flooding frequency	None to very	None to very rare Rare Occasional Frequent						uent		
Loss rating value	0		0.	2		0.5		2.0		0
Application method	Incorporate	əd		Surfa	ce ap	applied Surface applied of frozen ground or sr				
Loss rating value	0.1				0.2			0	0.2	
Application timing	July-Oct.			Mar	ch-Ju	ne		Nov		
Loss rating value	0.1				0.25			0.	.6	0.1
P Transport = (soil erosion + runoff class	ss + flooding fre	quency	/ + app	lication	meth	od + ap	oplicat	ion timing)		0.8
		BN	/Ps Mu	Itiplie	r					
BMPs Multiplier	= (1 – Effectiver	ness 1)) * (1 –	Effectiv	/enes	s 2) *	. * (1	 Effectivenes 	ss n)	
	BMPs M	ultiplie	er = (1 ·	- 0.2)						0.8
P Index = [(P So	ource Potential	* P Tra	ansport	t Poter	ntial *	BMPs	Multi	plier) / 1.8] *	100	
P Index = [(2.04 * 0.8 * 0.8) / 1.8] * 100							73 (High)			

Scenario 6 – Part C. 0 ton/acre API

Characteristic	Description							Rating	
		P So	urce P	otentia	al	-			
P Source Pot	ential = {WEP _{coe}	_{ef} * [WEI	P + MN	VRL _{coef}	* (TF	P – WEP)]} +	{STP _{coef} * ST	P}	
STP = 500 lbs/acre	v	WEP = 0 lbs/acre TP = 0 lbs/ac						= 0 lbs/acr	e
P Source P		5 * [0 + 0	0.05 * (0 - 0)]}	+ {0	.0018 * 500}			0.9
		P Tran	nsport	Potent	tial				
Soil erosion (tons/acre/yr)	< 1		1 to 2			2 to 3	3 to 5	> 5	
Loss rating value	0		0.1			0.2	0.4	1	0
Soil runoff class	Negligible	V. Lo	Low Lo		w Moderate		High	V. Hig	h
Loss rating value	0.1	0.1	0.15 0.2		?	0.5	1.0	1.5	0.5
Flooding frequency	None to very	rare	Rai	re	0	ccasional	nal Frequent		
Loss rating value	0		0.2	2		0.5 2.0		.0	0
Application method	Incorporate	ed		Surfac	ce ap	plied	Surface a frozen grou		
Loss rating value	0.1				0.2		0	0.2	
Application timing	July-Oct.			Mar	ch-Ju	ine	Nov.		
Loss rating value	0.1				0.25		0	.6	0.1
P Transport = (soil erosion + runoff cla	ss + flooding fre	quency	+ appl	ication	meth	nod + applica	tion timing)		0.8
		BM	Ps Mu	ltiplier	,				
BMPs Multiplier	= (1 – Effectiver	ness 1)	* (1 – 1	Effectiv	renes	s 2) * * (1	- Effectivene	ss n)	
	BMPs M	ultiplier	r = (1 -	- 0.2)					0.8
P Index = [(P Set	ource Potential	* P Trai	nsport	Poten	tial *	BMPs Multi	plier) / 1.8] *	100	
P Index = [(0.9 * 0.8 * 0.8) / 1.8] * 100							32 (Medium)		

Example 6. Calculating Total PI From Sub APIs A, B, C

	P Index Rating
Part A, Initial 1 ton/acre API	52 (Medium)
Part B, Application Year, 2 tons/acre API	73 (High)
Part C, Non-Application Year, 0 ton/acre API	32 (Medium)
Average of Application and Non-Application Years	53 (Medium)

BMP Descriptions

Diversion (Code 362)

A diversion is a channel constructed across the slope, generally with a supporting ridge on the lower side, in order to:

- Break up and intercept concentrated flows on long slopes, on undulating land surfaces and on land generally considered too flat or irregular for terracing.
- Divert water away from farmsteads, manure storage systems and other improvements.

- Collect or direct water for water-spreading or water-harvesting systems.
- Increase or decrease the drainage area above ponds.
- Protect terrace systems by diverting water from the top terrace where topography, land use or land ownership prevents terracing the land above.
- Divert water away from active gullies or critically eroding areas.

• Supplement water management on conservation cropping or strip cropping systems.

This applies to all cropland and other land uses where surface runoff water control and/or management are needed.

Fencing (Code 382)

Fencing is a constructed barrier to livestock, wildlife or people. This practice may be applied on any area where livestock and/or wildlife control is needed. Fences are not needed where natural barriers will serve the purpose. The practice may be applied as part of a management plan to facilitate application of conservation practices that treat soil, water, air and plant animal resource concerns.

Field Border (Code 386)

A field border is a strip of permanent vegetation established at the edge or around the perimeter of a field to:

- Reduce erosion and nutrients in runoff.
- Provide wildlife food and cover.

Increase carbon storage.

This practice is applied around the perimeter of fields. Its use can support or connect other buffer practices within and between fields.

Filter Strip (Code 393)

A filter strip is a strip or area of herbaceous vegetation to:

• Reduce erosion and nutrients in runoff.

- Reduce dissolved nutrient loadings in runoff.
- Reduce suspended solids and associated nutrients in irrigation tailwater.

Grassed Waterway (Code 412)

A grassed waterway is a shaped or graded channel that is established with suitable vegetation to:

- Carry runoff water at a nonerosive velocity from terraces, diversions or other water concentrations without causing erosion or flooding.
- Reduce gully erosion.
- Protect/improve water quality.

Grassed waterways are used in areas where added water conveyance capacity and vegetative protection are needed to control erosion resulting from concentrated runoff.

Pond (Code 378)

A pond is a water impoundment made by constructing a dam or an embankment or by

excavating a pit or dugout. In this standard, ponds constructed by the first method are referred to as embankment ponds, and those constructed by the second method are referred to as excavated ponds. Ponds constructed by both the excavation and the embankment methods are classified as embankment ponds if the depth of water impounded against the embankment at spillway elevation is three feet or more. Ponds are designed to:

- Provide a trap for erosion and associated nutrient runoff.
- Provide water for livestock, fish and wildlife, recreation, fire control, crop and orchard spraying and other related uses.

Riparian Forest Buffer (Code 391)

A riparian forest buffer is an area of trees and shrubs located adjacent to streams, lakes, ponds or wetlands. Riparian forest buffers of sufficient width intercept sediment and nutrients in surface runoff and reduce nutrients in shallow subsurface water flow.

Woody vegetation in buffers provides food and cover for wildlife, helps lower water temperatures by shading the stream or waterbody and slows out-ofbank flood flows. In addition, the vegetation closest to the stream or waterbody provides litter fall and large wood important to fish and other aquatic organisms as a nutrient source and structural components to increase channel roughness and habitat complexity. Also, the woody roots increase the resistance of streambanks to erosion caused by high water flows or waves. Some tree and shrub species in a riparian forest buffer can be managed for timber, wood fiber and horticultural products.

Riparian Herbaceous Cover (Code 390)

Riparian herbaceous covers are grasses, sedges, rushes, ferns, legumes and forbs tolerant of intermittent flooding or saturated soils, established or managed as the dominant vegetation in the transitional zone between upland and aquatic habitats.

This practice may be applied as part of a conservation management system to accomplish one or more of the following purposes:

- Provide or improve food and cover for fish, wildlife and livestock.
- Improve and maintain water quality.
- Establish and maintain habitat corridors.
- Increase water storage on floodplains.
- Reduce erosion and associated nutrient runoff and improve stability to stream banks.
- Increase net carbon storage in the biomass and soil.
- Enhance pollen, nectar and nesting habitat for pollinators.
- Restore, improve or maintain the desired plant communities.
- Dissipate stream energy and trap sediment and associated nutrients.
- Enhance stream bank protection as part of stream bank soil bioengineering practices.

Conditions where riparian herbaceous buffers apply are:

- Areas adjacent to perennial and intermittent watercourses or waterbodies where the natural plant community is dominated by herbaceous vegetation that is tolerant of periodic flooding or saturated soils. For seasonal or ephemeral watercourses and waterbodies, this zone extends to the center of the channel or basin.
- Where channel and stream bank stability is adequate to support this practice.

• Where the riparian area has been altered and the potential natural plant community has changed.

Terrace (Code 600)

A terrace is an earthen embankment, a channel or a combination ridge and channel constructed across the slope to:

- Reduce slope length.
- Reduce erosion.

- Reduce sediment and associated nutrients in runoff water.
- Improve water quality.
- Intercept and conduct surface runoff at a nonerosive velocity to a stable outlet.
- Retain runoff for moisture conservation.
- Prevent gully development.
- Reduce flooding.

All photographs appear courtesy of USDA-NRCS Photo Gallery, http://photogallery.nrcs.usda.gov/.

Arkansas Phospho	rus Index Advisory Panel
Arkansas Natural Resources	University of Arkansas
Commission	Andrew Sharpley
Randy Young	Mark Cochran
Adrian Baber	Tommy Daniel
Patrick Fisk	Mike Daniels
Gina Wilson	Ed Gbur
Joe Williams	Brian Haggard
	John Jennings
USDA-ARS	Tom Riley
Philip Moore	Nate Slaton
Annie Donoghue	Karl VanDevender
Sara Duke	Lalit Verma
Dan Pote	Chuck West
USDA-NRCS	Arkansas Association of
Kalvin Trice	Conservation Districts
Wavey Austin	Debbie Moorland
Rich Joslin	Stacey Clark
Ed Mersiovsky	Josh Fortenberry
Ron Morrow	Casey Dunigan
Walter Delp	
Nancy Young	Arkansas Farm Bureau
	Evan Teague
Arkansas Department of	-
Environmental Quality	Watershed Conservation
Marcus Tilley	Resource Center
Keith Brown	Sandy Formica
Tyson Foods	
Jamie Burr	
•	

Printed by University of Arkansas Cooperative Extension Service Printing Services.

United States Department of Agriculture, University of Arkansas, and County Governments Cooperating

Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Director, Cooperative Extension Service, University of Arkansas. The Arkansas Cooperative Extension Service offers its programs to all eligible persons regardless of race, color, national origin, religion, gender, age, disability, marital or veteran status, or any other legally protected status, and is an Affirmative Action/Equal Opportunity Employer.